Graduate Course Structure for PhD and MS Students Specialization areas and their corresponding courses

Note: if you want to use a course not on this list, get approval from your faculty advisor.

Specialization: Fluid Mechanics Research Areas: Fluid Mechanics

Introductory courses MAE 210A, B, C Fluid Mechanics I, II, III

Advanced courses MAE 212 Introductory Compressible Flow

MAE 214A Introduction to Turbulence and Turbulent Mixing

MAE 216 Ocean Turbulence and Mixing

MAE 215 Hydrodynamic Stability

MAE 223 Computational Fluid Dynamics MAE 224A, B Environmental Fluid Dynamics

Specialization: Biomechanics Research Areas: Biomechanics

Introductory courses MAE 209 / Continuum Mechanics Applied to Medicine/Biology

BENG 209

Advanced courses

MAE 261 Cardiovascular Fluid Mechanics MAE 262 Fluid Mechanics of the Cell

MAE 263 Experimental Methods in Cell Mechanics

MAE 266/MATS 252 Biomaterials and Medical Devices

Specialization: Combustion

Research Areas: Thermal Sciences, Engineering Physics, Energy

Introductory courses MAE 211 Introduction to Combustion

MAE 212 Introductory Compressible Flow

Advanced courses MAE 213 Mechanics of Propulsion

MAE 220A,B,C Physics of Gases; Physical Gasdynamics; Nonequilibruim

Gasdynamics

MAE 221A, B Heat Transfer; Mass Transfer

MAE 256 Radiative Transfer for Energy Applications

Specialization: Solid Mechanics

Research Areas: Materials Sciences, Applied and Solid Mechanics

Introductory courses MAE 231A,B Foundations of Solid Mechanics; Elasticity

Advanced courses MAE 231C Anelasticity

or

SE 273 Theory of Plasticity and Viscoelasticity

MAE 232ABC/SE 276ABC Finite Element Methods in Solid Mechanics I, II, III

MAE 233A, B Fracture Mechanics; Micromechanics

MAE 235 Computational Techniques in Finite Elements

MAE 238 Stress Waves in Solids

MAE 267/MATS 253 Nanomaterials and Properties

Specialization: Environmental Engineering

Research Areas: Environmental Engineering, Energy

Introductory courses MAE 210B Fluid Mechanics II

Advanced courses MAE 214A Introduction to Turbulence and Turbulent Mixing

MAE 216 Ocean Turbulence and Mixing
MAE 221A, B Heat Transfer; Mass Transfer;
MAE 224A, B Environmental Fluid Dynamics
MAE 254/MATS 256 Energy Materials & Application

MAE 255

Boundry Layer/Renew Energy Meteorology
MAE 256

Radiative Transfer for Energy Applications
SIO 217A, B, C

Atmospheric and Climate Sciences I, II, III

Specialization: Applied Atmospheric Sciences

Research Area: Environmental Engineering

SIO 217A, B, C Atmospheric and Climate Sciences I, II, III

SIO 218 Cloud Dynamics and Climate SIO 236 Satellite Remote Sensing

Specialization: Design Research Areas: Design

Introductory courses MAE 291 Design and Mechanics in Computer technology

MAE 292 Computer-Aided Design and Analysis

Advanced courses MAE 232ABC/SE 276ABC Finite Element Methods in Solid Mechanics I, II, III

Specialization: Linear and Optimal Control

Research Areas: Dynamics Systems and Control

Introductory courses MAE 280A, B Linear Systems Theory; Linear Control Design

Advanced courses MAE 284 Robust and Multi-Variable Control

MAE 287 Control of Distributed Parameter Systems

MAE 288A Optimal Control MAE 288B Optimal Estimation

MAE 289 Functional Analysis with Applications

MAE 290A, B Efficient Numerical Methods for Simulation, Optimization

and Control; Numerical Methods for Differential Equations

Specialization: Adaptive Systems and Dynamic Modeling

Research Areas: Dynamics Systems and Control

Introductory courses MAE 242 Robot Motion Planning

MAE 247 Cooperative Control of Multi-Agent Systems MAE 281A, B Nonlinear Systems; Nonlinear Control

Advanced courses MAE 282 Adaptive Control

MAE 283A Parametric Identification, Theory & Methods

MAE 283B Approximate Identification & Control

MAE 286 Hybrid Systems MAE 222 Flow Control

Specialization: Materials Sciences

Research Areas: Materials Sciences, Applied and Solid Mechanics

Introductory courses MATS 201A/MAE 271A Thermodynamics of Solids

MATS 201B/MAE 271B Solid State Diffusion & Reaction Kinetics

Advanced courses MATS 201C/MAE 271C Phase Transformations

MATS 205A/MAE 272 Imperfections in Solids MATS 211/MAE 229A Mechanical Properties

MATS 218/MAE 250 Fatigue, Fracture, and Failure MATS 227/MAE 251 Structure and Bonding of Solids

MATS 213A,B Dynamic Behavior of Materials I & II

MATS 233A,/MAE 252A,B Processing & Synthesis of Advanced Materials

MATS 236/MAE 253 Ceramic & Glass Technology

MATS 251/MAE265 Structure & Properties of Electronic, Magnetic,

Photonic Materials

MATS 252/MAE 266

MAE 253/MAE 267

MAE 254/MATS 256

MATS 257

Biomaterials and Medical Devices
Nanomaterials and Properties
Energy Materials & Application
Polymer Science and Engineering

Specialization: Applied Plasma Physics

Research Areas: Thermal Sciences, Engineering Physics, Energy

Introductory courses MAE 217A Introduction to Gas Discharge Plasma Physics

MAE 217B Intro to Non-magnetized Plasma Physics
MAE 217C Intro to Magnetized Plasma Physics

MAE 218A Intro to High Energy Density Physics (MHD and Pinches)

MAE 218B Intro to High Energy Density Physics (Laser-Plasma

Interactions)

Advanced courses MAE 227A Fundamentals of Modern Plasma Physics (Magnetized

Plasma)

MAE 227B Fundamentals of Modern Plasma Physics (Laser-Plasma

Interactions)

MAE 228 Selected Topics in Plasma Physics

PHYS 218A,B,C Plasma Physics

PHYS 228 High Energy Astrophysics and Compact Objects

PHYS 235 Nonlinear Plasma Theory

ECE 240A Laser and Optics

Specialization: Mathematics

Research Areas: Applied and Solid Mechanics, Material Sciences, Fluid Mechanics, Thermal Sciences, Engineering Physics, Dynamics Systems and Controls, Environmental Engineering, Biomechanics, Design

, Dynamics Systems and Controls, Environmental Engineering, Biomechanics, Design		
MAE 208	Mathematics for Engineers	
MAE 289	Functional Analysis and Applications	
MAE 294A,B,C	Methods in Applied Mechanics I, II, III	
MAE 290A,B	Efficient Numerical Methods for Simulation, Optimization	
	and Control; Numerical Methods for Differential Equations	
MATH 210A,B,C	Mathematical Methods in Physics and Engineering	
MATH 211	Fourier Analysis on Finite Groups	
MATH 212A	Introduction to the Mathematics of Systems and Control	
MATH 220A,B,C	Complex Analysis	
MATH 221A,B,C	Topics in Several Complex Variables	
MATH 227A,B,C	Topics In Complex Analysis	
MATH 231A,B,C	Partial Differential Equations	
MATH 233	Singular Perturbation Theory for Differential Equations	
MATH 240A,B,C	Real Analysis	
MATH 241A,B,C	Functional Analysis	
MATH 247A	Topics in Real Analysis	
MATH 250A,B,C	Differential Geometry	
MATH 270A,B,C	Numerical Mathematics	
MATH 271A,B,C	Numerical Optimization	
MATH 272A,B,C	Numerical Partial Differential Equations	
MATH 273A,B,C	Scientific Computation	
MATH 274A	Topics in Real Analysis	
MATH 280A,B,C	Probability Theory	
MATH 285A, B	Stochastic Processes	
MATH 286	Stochastic Differential Equations	
MATH 274A MATH 280A,B,C MATH 285A, B	Topics in Real Analysis Probability Theory Stochastic Processes	

Nonparametric Analysis

Time Series Analysis; Multivariate Analysis;

MATH 290A,B,C Topology

MATH 287A,B,C

Specialization: Basic Science

Research Areas: Applied and Solid Mechanics, Material Sciences, Fluid Mechanics, Thermal Sciences, Engineering Physics, Dynamics Systems and Controls, Environmental Engineering, Biomechanics, Design

CHEM 213	Chemistry of Macromolecules
CHEM 214	Molecular and Cellular Biochemistry
ECE 220	Space Plasma Physics
ECE 222	Applied Electromagnetic Theory
ECE 253A	Digital Image Analysis
ECE 270A, B	Neurocomputing
PHYS 200A,B	Theoretical Mechanics
PHYS 201	Mathematical Physics
PHYS 203A,B	Advanced Classical Electrodynamics
PHYS 211A,B	Solid-State Physics
SIO 203A,B,C	Methods of Applied Analysis

Not all courses will be offered every year. Consult the course offerings for the current year.

If you want to use a course not on this list, get approval from your faculty advisor.

A Note About MAE 207's:

MAE 207, Topics in Engineering Science, is often used to develop new courses before an actual course number is assigned. You may use 207's as many as two times. The topics must be different from one another. If you want to use more, please consult with your faculty advisor or the MAE Graduate Advisor.

Updated August 2017