Graduate Course Structure for PhD and MS Students
Specialization areas and their corresponding courses

Note: if you want to use a course not on this list, get approval from your faculty advisor.

Specialization: Fluid Mechanics
Research Areas: Fluid Mechanics

Introductory courses
- MAE 210A, B, C

Advanced courses
- MAE 212
- MAE 214A
- MAE 216
- MAE 215
- MAE 223
- MAE 224A, B

Specialization: Biomechanics
Research Areas: Biomechanics

Introductory courses
- MAE 209 / BENG 209

Advanced courses
- MAE 261
- MAE 262
- MAE 263
- MAE 266/MATS 252

Specialization: Combustion
Research Areas: Thermal Sciences, Engineering Physics

Introductory courses
- MAE 211
- MAE 212

Advanced courses
- MAE 213
- MAE 220A,B,C
- MAE 221A, B
- MAE 256

Specialization: Solid Mechanics
Research Areas: Materials Sciences, Applied and Solid Mechanics

Introductory courses
- MAE 231A,B

Advanced courses
- MAE 231C
- SE 273
MAE 233A, B Fracture Mechanics; Micromechanics
MAE 235 Computational Techniques in Finite Elements
MAE 238 Stress Waves in Solids
MAE 267/MATS 253 Nanomaterials and Properties

Specialization: Environmental Engineering
Research Areas: Environmental Engineering
Introductory courses MAE 210B Fluid Mechanics II

Advanced courses MAE 214A Introduction to Turbulence and Turbulent Mixing
MAE 216 Ocean Turbulence and Mixing
MAE 221A, B Heat Transfer; Mass Transfer;
MAE 224A, B Environmental Fluid Dynamics
MAE 255 Boundry Layer/Renew Energy Meteorology
MAE 256 Radiative Transfer for Energy Applications
SIO 217A, B, C Atmospheric and Climate Sciences I, II, III

Specialization: Applied Atmospheric Sciences
Research Area: Environmental Engineering

SIO 217A, B, C Atmospheric and Climate Sciences I, II, III
SIO 218 Cloud Dynamics and Climate
SIO 236 Satellite Remote Sensing

Specialization: Design
Research Areas: Design
Introductory courses MAE 291 Design and Mechanics in Computer technology
MAE 292 Computer-Aided Design and Analysis

Specialization: Linear and Optimal Control
Research Areas: Dynamics Systems and Control
Introductory courses MAE 280A, B Linear Systems Theory; Linear Control Design

Advanced courses MAE 284 Robust and Multi-Variable Control
MAE 287 Control of Distributed Parameter Systems
MAE 288A Optimal Control
MAE 288B Optimal Estimation
MAE 289 Functional Analysis with Applications
MAE 290A, B Efficient Numerical Methods for Simulation, Optimization and Control; Numerical Methods for Differential Equations

Specialization: Adaptive Systems and Dynamic Modeling
Research Areas: Dynamics Systems and Control
Introductory courses MAE 242 Robot Motion Planning
MAE 247 Cooperative Control of Multi-Agent Systems
MAE 281A, B Nonlinear Systems; Nonlinear Control

Advanced courses
MAE 282 Adaptive Control
MAE 283A Parametric Identification, Theory & Methods
MAE 283B Approximate Identification & Control
MAE 286 Hybrid Systems
MAE 222 Flow Control

Specialization: Materials Sciences
Research Areas: Materials Sciences, Applied and Solid Mechanics
Introductory courses
MATS 201A/MAE 271A Thermodynamics of Solids
MATS 201B/MAE 271B Solid State Diffusion & Reaction Kinetics

Advanced courses
MATS 201C/MAE 271C Phase Transformations
MATS 205A/MAE 272 Imperfections in Solids
MATS 211/MAE 229A Mechanical Properties
MATS 218/MAE 250 Fatigue, Fracture, and Failure
MATS 227/MAE 251 Structure and Bonding of Solids
MATS 213A,B Dynamic Behavior of Materials I & II
MATS 233A,/MAE 252A,B Processing & Synthesis of Advanced Materials
MATS 236/MAE 253 Ceramic & Glass Technology
MATS 251/MAE265 Structure & Properties of Electronic, Magnetic, Photonic Materials
MATS 252/MAE 266 Biomaterials and Medical Devices
MAE 253/MAE 267 Nanomaterials and Properties

Specialization: Applied Plasma Physics
Research Areas: Thermal Sciences, Engineering Physics
Introductory courses
MAE 217A Introduction to Gas Discharge Plasma Physics
MAE 217B Intro to Non-magnetized Plasma Physics
MAE 217C Intro to Magnetized Plasma Physics
MAE 218A Intro to High Energy Density Physics (MHD and Pinches)
MAE 218B Intro to High Energy Density Physics (Laser-Plasma Interactions)

Advanced courses
MAE 227A Fundamentals of Modern Plasma Physics (Magnetized Plasma)
MAE 227B Fundamentals of Modern Plasma Physics (Laser-Plasma Interactions)
MAE 228 Selected Topics in Plasma Physics
PHYS 218A,B,C Plasma Physics
PHYS 228 High Energy Astrophysics and Compact Objects
PHYS 235 Nonlinear Plasma Theory
ECE 240A Laser and Optics

Specialization: Mathematics
Research Areas: Applied and Solid Mechanics, Material Sciences, Fluid Mechanics, Thermal Sciences, Engineering Physics, Dynamics Systems and Controls, Environmental Engineering, Biomechanics, Design
MAE 208 Mathematics for Engineers
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 289</td>
<td>Functional Analysis and Applications</td>
</tr>
<tr>
<td>MAE 294A,B,C</td>
<td>Methods in Applied Mechanics I, II, III</td>
</tr>
<tr>
<td>MAE 290A,B</td>
<td>Efficient Numerical Methods for Simulation, Optimization and Control; Numerical Methods for Differential Equations</td>
</tr>
<tr>
<td>MATH 210A,B,C</td>
<td>Mathematical Methods in Physics and Engineering</td>
</tr>
<tr>
<td>MATH 211</td>
<td>Fourier Analysis on Finite Groups</td>
</tr>
<tr>
<td>MATH 212</td>
<td>Introduction to the Mathematics of Systems and Control</td>
</tr>
<tr>
<td>MATH 220A,B,C</td>
<td>Complex Analysis</td>
</tr>
<tr>
<td>MATH 221A,B,C</td>
<td>Topics in Several Complex Variables</td>
</tr>
<tr>
<td>MATH 227A,B,C</td>
<td>Topics in Complex Analysis</td>
</tr>
<tr>
<td>MATH 231A,B,C</td>
<td>Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 233</td>
<td>Singular Perturbation Theory for Differential Equations</td>
</tr>
<tr>
<td>MATH 240A,B,C</td>
<td>Real Analysis</td>
</tr>
<tr>
<td>MATH 241A,B,C</td>
<td>Functional Analysis</td>
</tr>
<tr>
<td>MATH 247A</td>
<td>Topics in Real Analysis</td>
</tr>
<tr>
<td>MATH 250A,B,C</td>
<td>Differential Geometry</td>
</tr>
<tr>
<td>MATH 270A,B,C</td>
<td>Numerical Mathematics</td>
</tr>
<tr>
<td>MATH 271A,B,C</td>
<td>Numerical Optimization</td>
</tr>
<tr>
<td>MATH 272A,B,C</td>
<td>Numerical Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 273A,B,C</td>
<td>Scientific Computation</td>
</tr>
<tr>
<td>MATH 274A</td>
<td>Topics in Real Analysis</td>
</tr>
<tr>
<td>MATH 280A,B,C</td>
<td>Probability Theory</td>
</tr>
<tr>
<td>MATH 285A,B</td>
<td>Stochastic Processes</td>
</tr>
<tr>
<td>MATH 286</td>
<td>Stochastic Differential Equations</td>
</tr>
<tr>
<td>MATH 287A,B,C</td>
<td>Time Series Analysis; Multivariate Analysis; Nonparametric Analysis</td>
</tr>
<tr>
<td>MATH 290A,B,C</td>
<td>Topology</td>
</tr>
</tbody>
</table>

Specialization: Basic Science

Research Areas: Applied and Solid Mechanics, Material Sciences, Fluid Mechanics, Thermal Sciences, Engineering Physics, Dynamics Systems and Controls, Environmental Engineering, Biomechanics, Design

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 213</td>
<td>Chemistry of Macromolecules</td>
</tr>
<tr>
<td>CHEM 214</td>
<td>Molecular and Cellular Biochemistry</td>
</tr>
<tr>
<td>ECE 220</td>
<td>Space Plasma Physics</td>
</tr>
<tr>
<td>ECE 222</td>
<td>Applied Electromagnetic Theory</td>
</tr>
<tr>
<td>ECE 253A</td>
<td>Digital Image Analysis</td>
</tr>
<tr>
<td>ECE 270A,B</td>
<td>Neurocomputing</td>
</tr>
<tr>
<td>PHYS 200A,B</td>
<td>Theoretical Mechanics</td>
</tr>
<tr>
<td>PHYS 201</td>
<td>Mathematical Physics</td>
</tr>
<tr>
<td>PHYS 203A,B</td>
<td>Advanced Classical Electrodynamics</td>
</tr>
<tr>
<td>PHYS 211A,B</td>
<td>Solid-State Physics</td>
</tr>
<tr>
<td>SIO 203A,B,C</td>
<td>Methods of Applied Analysis</td>
</tr>
</tbody>
</table>

Not all courses will be offered every year. Consult the course offerings for the current year.

If you want to use a course not on this list, get approval from your faculty advisor.

A Note About MAE 207’s:
MAE 207, Topics in Engineering Science, is often used to develop new courses before an actual course number is assigned. You may use 207’s as many as two times. The topics must be different from one another. If you want to use more, please consult with your faculty advisor or the MAE Graduate Advisor.

Updated June 2017