MAE 123
Intro/Transport in Porous Media (4 units)
formerly MAE 125B

Class/Laboratory Schedule: 4 hours lecture, 8 hours outside preparation. 12 hours/week total.

Course Coordinator(s): Jan Kleissl

Textbooks/Materials:
1. G. Pinder and M. Celia, Subsurface Hydrology

Prerequisites: Grades of C- or better in MAE MAE 101C or CENG 101B, 105, and 107.

- [] Required Course
- [] Technical Elective Course
- [] Other: __

Performance Criteria:

Objective 1
1.1 Students will demonstrate an understanding of optimum material selection for a variety of engineering applications.

Objective 2
2.1 Students will demonstrate the ability to identify the structure of common engineering materials, and calculate crystal lattice parameters.
2.2 Students will demonstrate an ability to qualitatively predict the physical properties of materials based on atomic bonding considerations.
2.3 Students will demonstrate an ability to qualitatively predict the mechanical properties of materials based on atomic bonding and crystal structure considerations.

Objective 3
3.1 Students will demonstrate an understanding of the role of processing route on microstructure evolution during material synthesis.
3.2 Students will demonstrate an ability to select a processing route for material synthesis to achieve specific material performance.

Objective 4
4.1 Students will demonstrate the ability to calculate the stress-strain behavior of a material from its load-displacement behavior.
4.2 Students will demonstrate the ability to design a thermo-mechanical processing route to produce a desired microstructure for structural and electrical performance.

Course Objectives:
(Numbers in parentheses refer to the specific MAE Program Outcomes)

Objective 1: To teach students the basic principles underlying the dynamics of linear electrical circuits (1a, 11k).

Objective 2: To train students to formulate and solve the equations describing electrical circuits (1a, 5e, 11k).

Objective 3: To introduce students to active circuits and to provide them with an understanding of their application to signal conditioning, acquisition and filtering. (1a, 3c, 5e, 11k).

Course Topics:
1. Circuit variables, units, symbols
2. Ideal elements - resistor, switch, voltage source, current source, capacitor, inductor
3. Kirchoff's laws
4. Elements in series and parallel, wye and delta
5. Nodal analysis; mesh analysis
6. Properties of linear circuits - proportionality, superposition
7. Thevenin and Norton equivalent circuits
8. RLC circuits
9. The operational amplifier (OP-AMP), analysis and design of circuits using OP-AMPS
10. Signal conditioning: offset removal, scaling, anti-aliasing
11. Signal acquisition by analog-to-digital converter
12. Using Laplace transform to solve constant-coefficient, ordinary differential equations of electrical circuits subject to known inputs and initial conditions
13. Filtering: low-pass, high-pass, band pass filters

Prepared By: K. Vecchio, March 2000
Revised: Prab bandaru & Joanna McKittrick, April 2008, via Teaching Work Group Meeting
Reviewed and Revised: TWG, June 2010; June 2011
Reviewed: TWG, October 2012
Revised: J. Kleissl, 2012