Graduate Course Structure for PhD Students

Specialization areas and their corresponding courses

Note: if you want to use a course not on this list, get approval from your faculty advisor.

Fluid Mechanics

Introductory courses
- MAE 210A, B, C
 Fluid Mechanics I, II, III

Advanced courses
- MAE 212
 Introductory Compressible Flow
- MAE 214A
 Introduction to Turbulence and Turbulent Mixing
- MAE 214B
 Ocean Turbulence and Mixing
- MAE 215
 Hydrodynamic Stability
- MAE 222A, B, C
 Advanced Fluid Mechanics
- MAE 223
 Computational Fluid Dynamics
- MAE 224A, B
 Environmental Fluid Dynamics

Biomechanics

Introductory courses
- MAE 209 / BENG 209
 Continuum Mechanics Applied to Medicine/Biology

Advanced courses
- MAE 250
 Medical Device Materials
- MAE 261
 Cardiovascular Fluid Mechanics
- MAE 262
 Fluid Mechanics of the Cell
- MAE 263
 Experimental Methods in Cell Mechanics
- MAE 266/MATS 252
 Biomaterials and Medical Devices

Combustion (Thermal sciences)

Introductory courses
- MAE 211
 Introduction to Combustion
- MAE 212
 Introductory Compressible Flow

Advanced courses
- MAE 213
 Mechanics of Propulsion
- MAE 220A, B, C
 Physics of Gases; Physical Gasdynamics; Nonequilibrium Gasdynamics

Solid Mechanics

Introductory courses
- MAE 231A, B
 Foundations of Solid Mechanics; Elasticity

Advanced courses
- MAE 231C
 Anelasticity
 or
- SE 273
 Theory of Plasticity and Viscoelasticity
- MAE 232A, B, C
 Finite Element Methods in Solid Mechanics I, II, III
- MAE 233A, B, C
 Fracture Mechanics; Micromechanics; Advanced Mechanics of Composite Materials
- MAE 235/SIO 233
 Computational Techniques in Finite Elements
- MAE 238
 Stress Waves in Solids
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 267/MATS 253</td>
<td>Nanomaterials and Properties</td>
</tr>
<tr>
<td>MAE 270</td>
<td>Mechanics of Powder Processing</td>
</tr>
<tr>
<td>Environmental Engineering</td>
<td></td>
</tr>
<tr>
<td>Introductory courses</td>
<td>MAE 210B</td>
</tr>
<tr>
<td>Advanced courses</td>
<td>MAE 214A,B</td>
</tr>
<tr>
<td></td>
<td>MAE 221A,B</td>
</tr>
<tr>
<td></td>
<td>MAE 224A,B</td>
</tr>
<tr>
<td>Chemical Engineering</td>
<td></td>
</tr>
<tr>
<td>Introductory courses</td>
<td>CENG 210A, MAE 210B</td>
</tr>
<tr>
<td>Advanced courses</td>
<td>CENG 221A,B</td>
</tr>
<tr>
<td></td>
<td>CENG 221B</td>
</tr>
<tr>
<td></td>
<td>CENG 251</td>
</tr>
<tr>
<td></td>
<td>CENG 252</td>
</tr>
<tr>
<td></td>
<td>CENG 253</td>
</tr>
<tr>
<td></td>
<td>CENG 254</td>
</tr>
<tr>
<td></td>
<td>CENG 255</td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Introductory courses</td>
<td>MAE 291, MAE 292</td>
</tr>
<tr>
<td>Advanced courses</td>
<td>MAE 293</td>
</tr>
<tr>
<td></td>
<td>MAE 232A,B,C.</td>
</tr>
<tr>
<td>Linear and Optimal Control</td>
<td></td>
</tr>
<tr>
<td>Introductory courses</td>
<td>MAE 280A, B</td>
</tr>
<tr>
<td>Advanced courses</td>
<td>MAE 284</td>
</tr>
<tr>
<td></td>
<td>MAE 287</td>
</tr>
<tr>
<td></td>
<td>MAE 288A</td>
</tr>
<tr>
<td></td>
<td>MAE 288B</td>
</tr>
<tr>
<td></td>
<td>MAE 289</td>
</tr>
<tr>
<td></td>
<td>MAE 290A, B</td>
</tr>
<tr>
<td>Adaptive Systems and Dynamic Modeling</td>
<td></td>
</tr>
<tr>
<td>Introductory courses</td>
<td>MAE 242, MAE 247, MAE 281A, B</td>
</tr>
<tr>
<td>Advanced courses</td>
<td>MAE 282</td>
</tr>
<tr>
<td></td>
<td>MAE 283A</td>
</tr>
</tbody>
</table>
MAE 283BApproximate Identification & Control
MAE 286Hybrid Systems
MAE **Optimization and Control of Fluid-Mechanical Systems

Materials Sciences

Introductory courses
- MATS 201A/MAE 271A Thermodynamics of Solids
- MATS 201B/MAE 271B Solid State Diffusion & Reaction Kinetics

Advanced courses
- MATS 201C/MAE 271C Phase Transformations
- MATS 205A/MAE 272 Imperfections in Solids
- MATS 211/MAE 229A Mechanical Properties
- MATS 218/MAE 250 Fatigue, Fracture, and Failure
- MATS 227/MAE 251 Structure and Bonding of Solids
- MATS 213A,B Dynamic Behavior of Materials I & II
- MATS 233A./MAE 252A,B Processing & Synthesis of Advanced Materials
- MATS 236/MAE 253 Ceramic & Glass Technology
- MATS 251/MAE265 Structure & Properties of Electronic, Magnetic, Photonic Materials
- MATS 252/MAE 266 Biomaterials and Medical Devices
- MAE 253/MAE 267 Nanomaterials and Properties

Applied Plasma Physics

Introductory courses
- MAE 217A Introduction to Gas Discharge Plasma Physics
- MAE 217B Intro to Non-magnetized Plasma Physics
- MAE 217C Intro to Magnetized Plasma Physics
- MAE 218A Intro to High Energy Density Physics (MHD and Pinches)
- MAE 218B Intro to High Energy Density Physics (Laser-Plasma Interactions)

Advanced courses
- MAE 227A Fundamentals of Modern Plasma Physics (Magnetized Plasma)
- MAE 227B Fundamentals of Modern Plasma Physics (Laser-Plasma Interactions)
- MAE 228 Selected Topics in Plasma Physics
- PHYS 218A,B,C Plasma Physics
- PHYS 228 High Energy Astrophysics and Compact Objects
- PHYS 235 Nonlinear Plasma Theory
- ECE 240A Laser and Optics

Mathematics

- MATH 210A,B,C Mathematical Methods in Physics and Engineering
- MATH 211 Fourier Analysis on Finite Groups
- MATH 212A Introduction to the Mathematics of Systems and Control
- MATH 220A,B,C Complex Analysis
- MATH 221A,B,C Topics in Several Complex Variables
- MATH 227A,B,C Topics In Complex Analysis
- MATH 231A,B,C Partial Differential Equations
- MATH 233 Singular Perturbation Theory for Differential Equations
MATH 240A,B,C Real Analysis
MATH 241A,B,C Functional Analysis
MATH 247A Topics in Real Analysis

Mathematics (cont’d)

MATH 250A,B,C Differential Geometry
MATH 270A,B,C Numerical Mathematics
MATH 271A,B,C Numerical Optimization
MATH 272A,B,C Numerical Partial Differential Equations
MATH 273A,B,C Scientific Computation
MATH 274A Topics in Real Analysis
MATH 280A,B,C Probability Theory
MATH 285A, B Stochastic Processes
MATH 286 Stochastic Differential Equations
MATH 287A,B,C Time Series Analysis; Multivariate Analysis; Nonparametric Analysis
MATH 290A,B,C Topology

Basic Science

CHEM 213 Chemistry of Macromolecules
CHEM 214 Molecular and Cellular Biochemistry
ECE 220 Space Plasma Physics
ECE 222 Applied Electromagnetic Theory
ECE 253A Digital Image Analysis
ECE 270A, B Neurocomputing
PHYS 200A,B Theoretical Mechanics
PHYS 201 Mathematical Physics
PHYS 203A,B Advanced Classical Electrodynamics
PHYS 211A,B Solid-State Physics
SIO 203A,B,C Methods of Applied Analysis

Not all courses will be offered every year. Consult the course offerings for the current year.

If you want to use a course not on this list, get approval from your faculty advisor.

A Note About MAE 207’s:

MAE 207, Topics in Engineering Science, is often used to develop new courses before an actual course number is assigned. You may use 207’s as many as two times. The topics must be different from one another. If you want to use more, please consult with your faculty advisor or the MAE Graduate Advisor.