MAE 143A
Signals and Systems (4 units)

Class/Laboratory Schedule: four hours of lecture, eight hours of outside preparation.
12 hours/week total

Course Coordinator(s): Robert R. Bitmead

Textbooks/Materials:


Prerequisites: Math 20D, 20E, 20F and MAE 105. Restricted to Engineering Majors

Course Type: Required

Performance Criteria:
Objective 1
1.1 Students will demonstrate understanding of the distinction between the representation of a signal in transform domain and the systems which operate upon them.
1.2 Students will demonstrate the ability to use transform domain techniques to solve for signal properties via filtering.

Objective 2
2.1 Students will be able to demonstrate, using standard computational tools, the ability to compute, display and interpret modified signals and system properties connected with realistic Engineering problems such as low-pass filtering and downsampling.
2.2 Students will formulate criteria for the solution of industrial signal conditioning problems and then develop solutions.

Objective 3
3.1 Students will demonstrate understanding of the application of Matlab software to the analysis of signals.
3.2 Students will demonstrate an understanding of the application of signals to analyze systems.
Course Objectives:
(Numbers in parenthesis refer to the specific MAE Program Outcomes)

1. To teach students the basic principles of physical signals and of the systems which modify or manipulate them. (1, 2, 6, ME8, ME9, ME10, ME11)

2. To train students to formulate and to solve Engineering problems using representations and techniques of both time and frequency domain. (1, 2, ME10, ME11)

3. To introduce the students to the concepts and some techniques of the computational analysis of signals and systems using Matlab.(1, 2, 6, ME8, ME9)

Course Topics:
1. Computational analysis of signals using Matlab
2. Dynamical modeling and ordinary differential equations
3. Linearization and linear systems
4. Time domain properties of solutions, convolution
5. Laplace transforms, transfer functions
6. Fourier transforms, frequency response, spectra
7. Sampling discrete signals, aliasing
8. Z-transform, discrete Fourier transform
9. Elements of filtering

Last Updated: June 11 2019