Graduate Course Structure for PhD and MS Students

Specialization areas and their corresponding courses

Note: if you want to use a course not on this list, get approval from your faculty advisor.

Fluid Mechanics

Introductory courses
MAE 210A,B,C
Fluid Mechanics I, II, III

Advanced courses
MAE 212
Introductory Compressible Flow
MAE 214A
Introduction to Turbulence and Turbulent Mixing
MAE 216
Ocean Turbulence and Mixing
MAE 215
Hydrodynamic Stability
MAE 223
Computational Fluid Dynamics
MAE 224A, B
Environmental Fluid Dynamics

Biomechanics

Introductory courses
MAE 209 / BENG 209
Continuum Mechanics Applied to Medicine/Biology

Advanced courses
MAE 261
Cardiovascular Fluid Mechanics
MAE 262
Fluid Mechanics of the Cell
MAE 263
Experimental Methods in Cell Mechanics
MAE 266/MATS 252
Biomaterials and Medical Devices

Combustion (Thermal sciences)

Introductory courses
MAE 211
Introduction to Combustion
MAE 212
Introductory Compressible Flow

Advanced courses
MAE 213
Mechanics of Propulsion
MAE 220A,B,C
Physics of Gases; Physical Gasdynamics; Nonequilibrium Gasdynamics
MAE 221AB
Heat Transfer; Mass Transfer
MAE 256
Radiative Transfer for Energy Applications

Solid Mechanics

Introductory courses
MAE 231A,B
Foundations of Solid Mechanics; Elasticity

Advanced courses
MAE 231C
Anelasticity
or
SE 273
Theory of Plasticity and Viscoelasticity

MAE 232A,B,C
Finite Element Methods in Solid Mechanics I, II, III
MAE 233A,B
Fracture Mechanics; Micromechanics
MAE 235
Computational Techniques in Finite Elements
MAE 238
Stress Waves in Solids
Environmental Engineering

Introductory courses
- MAE 210B Fluid Mechanics II

Advanced courses
- MAE 214A Introduction to Turbulence and Turbulent Mixing
- MAE 215 Ocean Turbulence and Mixing
- MAE 221A,B Heat Transfer; Mass Transfer;
- MAE 224A,B Environmental Fluid Dynamics
- MAE 255 Boundry Layer/Renew Energy Meteorology
- MAE 256 Radiative Transfer for Energy Applications

Design

Introductory courses
- MAE 291 Design and Mechanics in Computer technology
- MAE 292 Computer-Aided Design and Analysis

Advanced courses

Linear and Optimal Control

Introductory courses
- MAE 280A, B Linear Systems Theory; Linear Control Design

Advanced courses
- MAE 284 Robust and Multi-Variable Control
- MAE 287 Control of Distributed Parameter Systems
- MAE 288A Optimal Control
- MAE 288B Optimal Estimation
- MAE 289 Functional Analysis with Applications
- MAE 290A, B Efficient Numerical Methods for Simulation, Optimization and Control; Numerical Methods for Differential Equations

Adaptive Systems and Dynamic Modeling

Introductory courses
- MAE 242 Robot Motion Planning
- MAE 247 Cooperative Control of Multi-Agent Systems
- MAE 281A, B Nonlinear Systems; Nonlinear Control

Advanced courses
- MAE 282 Adaptive Control
- MAE 283A Parametric Identification, Theory & Methods
- MAE 283B Approximate Identification & Control
- MAE 286 Hybrid Systems
- MAE 222 Flow Control

Materials Sciences

Introductory courses
- MATS 201A/MAE 271A Thermodynamics of Solids
- MATS 201B/MAE 271B Solid State Diffusion & Reaction Kinetics

Advanced courses
- MATS 201C/MAE 271C Phase Transformations
- MATS 205A/MAE 272 Imperfections in Solids
- MATS 211/MAE 229A Mechanical Properties
- MATS 218/MAE 250 Fatigue, Fracture, and Failure
- MATS 227/MAE 251 Structure and Bonding of Solids
MATS 213A,B Dynamic Behavior of Materials I & II
MATS 233A./MAE 252A,B Processing & Synthesis of Advanced Materials
MATS 236/MAE 253 Ceramic & Glass Technology
MATS 251/MAE265 Structure & Properties of Electronic, Magnetic, Photonic Materials
MATS 252/MAE 266 Biomaterials and Medical Devices
MAE 253/MAE 267 Nanomaterials and Properties

Applied Plasma Physics

Introductory courses
MAE 217A Introduction to Gas Discharge Plasma Physics
MAE 217B Intro to Non-magnetized Plasma Physics
MAE 217C Intro to Magnetized Plasma Physics
MAE 218A Intro to High Energy Density Physics (MHD and Pinches)
MAE 218B Intro to High Energy Density Physics (Laser-Plasma Interactions)

Advanced courses
MAE 227A Fundamentals of Modern Plasma Physics (Magnetized Plasma)
MAE 227B Fundamentals of Modern Plasma Physics (Laser-Plasma Interactions)
MAE 228 Selected Topics in Plasma Physics
PHYS 218A,B,C Plasma Physics
PHYS 228 High Energy Astrophysics and Compact Objects
PHYS 235 Nonlinear Plasma Theory
ECE 240A Laser and Optics

Mathematics

MAE 289 Functional Analysis and Applications
MAE 294A,B,C Methods in Applied Mechanics I, II, III
MAE 290A,B Efficient Numerical Methods for Simulation, Optimization and Control; Numerical Methods for Differential Equations
MATH 210A,B,C Mathematical Methods in Physics and Engineering
MATH 211 Fourier Analysis on Finite Groups
MATH 212A Introduction to the Mathematics of Systems and Control
MATH 220A,B,C Complex Analysis
MATH 221A,B,C Topics in Several Complex Variables
MATH 227A,B,C Topics In Complex Analysis
MATH 231A,B,C Partial Differential Equations
MATH 233 Singular Perturbation Theory for Differential Equations
MATH 240A,B,C Real Analysis
MATH 241A,B,C Functional Analysis
MATH 247A Topics in Real Analysis
MATH 250A,B,C Differential Geometry
MATH 270A,B,C Numerical Mathematics
MATH 271A,B,C Numerical Optimization
MATH 272A,B,C Numerical Partial Differential Equations
MATH 273A,B,C Scientific Computation
MATH 274A Topics in Real Analysis
MATH 280A,B,C Probability Theory
MATH 285A, B Stochastic Processes
MATH 286 Stochastic Differential Equations
MATH 287A,B,C Time Series Analysis; Multivariate Analysis; Nonparametric Analysis
MATH 290A,B,C Topology

Basic Science
CHEM 213 Chemistry of Macromolecules
CHEM 214 Molecular and Cellular Biochemistry
ECE 220 Space Plasma Physics
ECE 222 Applied Electromagnetic Theory
ECE 253A Digital Image Analysis
ECE 270A, B Neurocomputing
PHYS 200A,B Theoretical Mechanics
PHYS 201 Mathematical Physics
PHYS 203A,B Advanced Classical Electrodynamics
PHYS 211A,B Solid-State Physics
SIO 203A,B,C Methods of Applied Analysis

Not all courses will be offered every year. Consult the course offerings for the current year.

If you want to use a course not on this list, get approval from your faculty advisor.

A Note About MAE 207’s:

MAE 207, Topics in Engineering Science, is often used to develop new courses before an actual course number is assigned. You may use 207’s as many as two times. The topics must be different from one another. If you want to use more, please consult with your faculty advisor or the MAE Graduate Advisor.