Welcome to the Mechanical and Aerospace Engineering Department!

Congratulations on being admitted to the Department of Mechanical and Aerospace Engineering (MAE) in the Jacobs School of Engineering. We are sure you have questions about what to do next. We hope that this handbook will help you get familiar with our departments policies and expectations. Make sure to contact us if there are questions or concerns that are not answered.

MAE Undergraduate Academic Advising

The MAE advising staff assists students with their programs of study. The advising staff is available in EBU2, first floor for walk-in advising.

Walk-in Advising:
Monday through Friday
9:00 AM—11:30 AM & 1:30 PM—3:30 PM
(Closed Wednesday Afternoons)

The MAE advising program runs parallel to the work of college advisors who assist students with the general-education requirements of each college.

If you have any questions about your major please refer to the MAE advisors.

Sandra de Sousa
Last names A-L
Phone: (858) 822-2035
Email: sdesousa@ucsd.edu

Chelsea Rankin
Last names M-Z
Phone: (858) 534-0114
Email: crankin@ucsd.edu
MAE PROGRAM EDUCATIONAL OBJECTIVES

Our primary educational objectives are:

To provide our students with a strong technical education that will enable them to have successful careers as engineers, technology leaders and innovators.

To prepare our students for rapid technological change with the core knowledge central to assuring that they are able to further develop their knowledge and skills across a range of disciplines throughout their professional careers and pursue advanced education.

To prepare our students to communicate effectively and to deal knowledgeably and ethically with the impact of technology in our society and on global issues.

PROGRAM OUTCOMES

(ABET-accredited programs)

Aerospace and Mechanical Engineering:

- An ability to apply knowledge of mathematics, science, and engineering.
- An ability to design and conduct experiments, as well as being able to analyze and interpret data.
- An ability to design a system, component, or process to meet desired needs.
- An ability to function on multi-disciplinary teams.
- An ability to identify, formulate, and solve engineering problems.
- An understanding of professional and ethical responsibility.
- An ability to communicate effectively with written, oral, and visual means.
- The broad education necessary to understand the impact of engineering solutions in a global and societal context.
- A recognition of the need for and an ability to engage in life-long learning.
- A knowledge of contemporary issues.
- An ability to use modern engineering techniques, skills, and computing tools necessary for engineering practice.

Additionally:

Aerospace Engineering

- Knowledge of key topics in aeronautical engineering including aerodynamics, aerospace materials, structures, propulsion, flight mechanics, and stability and control.
- Knowledge of topics in astronautical engineering including attitude determination and control, space structures, orbital mechanics, and rocket propulsion.
- An ability to integrate knowledge of the fundamental topics in the design of an aerospace system.

Mechanical Engineering

- A familiarity with chemistry, calculus-based physics, and advanced mathematics.
- Familiarity with probability theory, statistics, and linear algebra.
- Ability to work professionally in mechanical systems areas including the design and realization of such systems.
- Ability to work professionally in thermal systems areas including the design and realization of such systems.
WHAT IS ABET?

ABET is the Accreditation Board for Engineering and Technology

All majors at USCD are accredited by the Western Association of Schools and Colleges (WASC). ABET is a specialized accreditation of educational programs in applied science, computing, engineering, and technology. It’s a certification recognized in the engineering industry as having satisfied set institutional requirements upon completion of the major. The board places emphasis on the following categories: engineering fundamentals, teamwork, leadership, presentation, creative design and application, and ethics.
DURING THE FIRST YEAR:

By the end of the first year, all students must complete at least the following eight required courses. These courses can be taken at UCSD or transferred in from a different university or community college.

![Course Options](image)

Average GPA, MSAT and TSAT Scores of Students Admitted Directly to MAE Majors (2015):

<table>
<thead>
<tr>
<th></th>
<th>Fall 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M.SAT</td>
</tr>
<tr>
<td>Aerospace</td>
<td>710</td>
</tr>
<tr>
<td>Mechanical</td>
<td>739</td>
</tr>
<tr>
<td>Environmental</td>
<td>708</td>
</tr>
</tbody>
</table>

MAJOR ACADEMIC ADVISING

MAE Undergraduate Advising Staff

The MAE advising staff assists students with their programs of study. The advising staff is available in EBU2, first floor for walk-in advising. Occasionally, we have meetings and need to close advising. You can refer to our online, updated advising calendar (mae.ucsd.edu/undergrad/advising) to check if we are temporarily out of the office.

Walk-in Advising: Monday through Friday from 9:00 AM - 11:30 AM and 1:30 PM - 3:30 PM (closed Wednesday afternoons)

The MAE advising program runs parallel to the work of college advisors who assist students with the general-education requirements of each college. If you have any questions about your major, then see the MAE advisors.

Student Affairs Lobby. The student lobby is a great resource for students. Here you’ll find the MAE course offerings list for the 2016-2017 academic year, four-year plans for all MAE majors, a list of pre-approved technical electives for each major, student petition forms, etc. The MAE Student Affairs lobby is located in EBU II on the first floor. We suggest you come prior to the Fall quarter to familiarize yourself with the lobby and EBU II itself.
GENERAL EDUCATION/COLLEGE REQUIREMENTS

For graduation, each student must satisfy general-education course requirements determined by the student’s college as well as the major requirements determined by the department. The six colleges at UCSD require widely different general-education courses and the number of such courses differs from one college to another. Each student should choose his or her college carefully, considering the special nature of the college and the breadth of general education.

In practice, the overwhelming majority of students are happy with their college assignment, even if it was not their first choice originally, and few students apply to switch. Petitions to transfer between colleges are difficult to justify and approved only in exceptional cases. To qualify, you must complete your originally assigned college’s writing program, demonstrate that switching to a different college will substantially shorten your time to degree, and have a cumulative grade point average of at least 2.5 with a specified number of completed units. Talk to your college advisor for more information about this.

Each MAE program allows for humanities and social science (HSS) courses so that students can fulfill their college requirements. In the ABET-accredited programs, students must follow a program that includes a total of at least twenty-four units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. It should be noted, however, that some colleges require more than the nine or ten HSS courses indicated in the curriculum tables. Accordingly, students in these colleges could take longer to graduate than the indicated four-year schedule. Students must consult with their college to determine which HSS courses to take.

<table>
<thead>
<tr>
<th>College</th>
<th># of Courses</th>
<th># of Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warren</td>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>Marshall</td>
<td>10-11</td>
<td>40-44</td>
</tr>
<tr>
<td>Muir</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>Sixth</td>
<td>12-14</td>
<td>52-60</td>
</tr>
<tr>
<td>ERC</td>
<td>10-15</td>
<td>44-64</td>
</tr>
<tr>
<td>Revelle</td>
<td>12-16</td>
<td>52-68</td>
</tr>
</tbody>
</table>

Units of each GE ranges between 4-6 units per course

MAE MAJOR PROGRAMS AND REQUIREMENTS

Specific course requirements for each major program are outlined in tables in this section of the handbook. In addition to the required technical courses specifically indicated, a suggested scheduling of humanities and social science courses (HSS) are distributed in the curricula for students to use to meet college general-education requirements. To graduate, students must maintain an overall GPA of at least 2.0 and they must have received at least a C- grade in each course required for the major. A list of pre-approved technical electives (TE) for each major is available in the MAE Student Affairs lobby (EBU II, first floor). In the accredited programs, TE courses are restricted to meet ABET standards. Students are encouraged to complete lower and upper-division courses as suggested in the curriculum tables in a timely fashion and in the sequences outlined.

We STRONGLY discourage students deviating from their four-year plan when taking MAE upper-division courses

Lower-division courses are offered more than once each year to permit students some flexibility in their program scheduling. However, **many MAE upper-division courses are taught only once per year**, and the courses are scheduled to be consistent with the curricula as shown in the tables. Students taking upper-division courses in a different order than that shown in the tables may experience conflicts as the schedules of different courses may overlap. A tentative schedule of course offerings is available from the department each spring for the following academic year. Prerequisite courses with a grade of D or F **must** be repeated before you can move on to the next course in the sequence. This includes the required math, physics and Chemistry courses. Prerequisites are strictly enforced by the department.
Capped Majors

Due to high demand, ALL engineering majors at the Jacobs School have been designated as oversubscribed and have been granted capped status as of Fall 2014.

1. Mechanical Engineering (Effective Fall 2009 for freshmen. Effective Fall 2011 for transfers)
2. Aerospace Engineering (Effective Fall 2009 for freshmen. Effective Fall 2011 for transfers)
3. Environmental Engineering (Effective Fall 2014 for freshmen. Effective Fall 2015 for transfers)

Acceptance into an Engineering Major
Admission to an engineering major is based on academic excellence demonstrated in high school, community college or other four year institutions.

Admitted students that have applied to a capped major will be further evaluated by the Office of Admissions and Relations with Schools for admission to the major. Acceptance will be granted up to the maximum number of students in each of these capped major programs. Students who are not admitted to the capped major are placed into the alternate major selected on the UC Undergraduate Application, provided the alternate is not impacted.

Students who would like to switch into a capped MAE major must (1) complete at least one year of academic study at UC San Diego, (2) meet the minimum requirements to apply, and (3) submit an online application through the JSOE Capped Major Application system during an application period. For more information, please contact MAE Student Affairs.

Freshmen
We highly recommend that freshman applicants list a non-capped major as their alternate choice on the UC Undergraduate Application. If a student lists a capped major as both the first and alternate choices on the UC application, and is not admitted to the first choice major, the Office of Admissions and Relations with Schools will place the student in the Undeclared major. The Undeclared major is not affiliated with the Jacobs School. However, students admitted as undeclared may later seek admission to an engineering major.

Transfers
We highly recommend that transfer applicants who list a capped engineering major as their first major, choose a non-engineering major as their alternate choice. If a student lists an oversubscribed major as both the first and alternate choices on the UC application, and is not admitted to the first choice major, the Office of Admissions and Relations with Schools will place the student in the Undeclared major. The Undeclared major is not affiliated with the Jacobs School.

It is strongly recommended that transfers complete the following preparation for all engineering majors.

- Calculus I—for Science and Engineering (Math 20A)
- Calculus II—for Science and Engineering (Math 20B)
- Calculus and Analytic Geometry (Math 20C)
- Differential Equations (Math 20D)
- Linear Algebra (Math 20F)
- Complete calculus-based physics series with lab experience (Physics 2A, B, and C)
- Chemistry 6A
- MATLAB programming course if available.
Transcripts and Course Equivalents

Your major department does not receive, handle, or evaluate your transcripts. If you have questions about your transcript evaluations, please contact the admissions office.

Mail all official transcripts and documents to:
University of California, San Diego
Office of Admissions and Relations with Schools
Attn: Transcripts
9500 Gilman Dr., #0021
La Jolla, CA 92093-0021

Some engineering courses may not transfer into MAE so you will need to petition for equivalency. For the MAE Department, a course substitution petition must be submitted through the MAE Undergraduate Online Petition Portal. You must provide documentation from the community college course in the form of a full syllabus (not just the course catalog description), homework, quizzes, and exams. Your complete petition will be reviewed by an MAE faculty member for equivalence.

ACADEMIC ENRICHMENT

A number of additional educational opportunities not formally required in the curriculum is available to undergraduates interested in exploring facets of engineering in more detail. These opportunities include participation in research, industrial internships, student societies, course instruction, and seminars.

Undergraduate Research and Independent Study (MAE 199)
Undergraduates may participate in engineering research at UCSD through Independent Study (MAE 199). MAE 199 courses offer qualified and motivated students the opportunity to work closely with faculty and graduate students and gain first-hand experience in conducting research. MAE students may take MAE 199, Independent Study for Undergraduates, under the guidance of an MAE faculty member. Typically, this course is taken as an elective on a P/NP basis. *Note: The Aerospace major does not currently offer technical elective credit for MAE 199.

Academic Internships: Special Study (MAE 197)
The UCSD Academic Internship Program coordinates work experiences for undergraduates with industry, government offices, and hospitals. Students work under the supervision of either a faculty member or an industrial supervisor. The position may or may not be salaried. Students may receive up to 12 units of academic credit by registering for MAE 197 Engineering Internship and completing a research paper or technical laboratory report on their internship work. The typical student time commitment to the internship is ten hours per week for every four units of academic credit. However, students may not receive upper division technical elective credit for such internships.

Opportunities Abroad
Engineering is already a global field offering jobs throughout the world. You can prepare yourself for these opportunities with an exciting study or internship experience abroad. Through the Study Abroad Office, students may receive credit for international study through a variety of programs. For information on EAP and OAP programs, first contact the Study Abroad Office (858-534-1123, abroad@ucsd.edu, or studyabroad.ucsd.edu) or visit the International Center on Library Walk.

Freshman Seminar Series
Informal seminars (MAE 87) are offered to new freshmen to provide them with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Topics vary quarter by quarter.
Teams in Engineering Service (TIES)

Teams in Engineering Service are an innovative service-learning academic program putting UCSD undergraduates and their technical and creative skills to work for San Diego non-profit organizations. Multi-disciplinary teams of UCSD students design, build, and deploy projects that solve technology-based problems for community partners.

TIES projects can range from working with orthopedists and physical therapists to developing and building mechanical tools or prosthetics for the developmentally disabled and to working with agriculture to develop new irrigation solutions for local farming communities.

The benefits for student’s involvement in TIES are numerous, and include improved communication, organizational, and leadership skills, start-to-finish design experience, multi-disciplinary teamwork, experience in project and resource management, ethics training and responsibility, as well as customer and community awareness. Finally, TIES provides demonstrable and measurable outcomes of undergraduate engineering theoretical knowledge, technical skills, teamwork, communication, ethical responsibility and value for professional development. Mechanical and Environmental majors students are eligible to receive 4 units of technical elective credit. *Note: The Aerospace major does not currently offer technical elective credit for either ENG 100 or ENG 100L.*

Team Internship Program (TIP)

Today’s employers are looking for engineers who have both technical skills and the ability to collaborate and function as a team. Summer Team Internships are part of the Jacobs School’s effort to enhance our students’ education through real-world engineering experiences in a team setting. Students work on-site with local, domestic, and international industry partners as a multi-disciplinary team of 2-5 students, focused on a clearly defined and significant project. TIP is a 10-12 week, full time, paid internship program during the summer. Undergraduate and graduate students of all levels in all engineering departments are eligible to apply. All application and resumes are screened by the TIP Office and candidates who best meet the criteria are forwarded to companies for review. TIP also offers resume guidance and professional development training to all applicants. This is designed to help students make the best impression at their interviews. TIP, in collaboration with the Corporate Affiliates Program (CAP), works with some of the top engineering companies. TIP students are often offered full time employment upon finishing their internship.

Some Participating Companies
AEROSPACE ENGINEERING

Aerospace engineering is a four-year curriculum that begins with fundamental engineering courses in mechanics, thermodynamics, materials, solid mechanics, fluid mechanics, and heat transfer. Additional courses are required in aerospace structures, aerodynamics, flight mechanics, propulsion, controls, and aerospace design. Graduates of this program normally enter the aerospace industry to develop aircraft and spacecraft, but also find employment in other areas that use similar technologies, such as mechanical and energy-related fields. Examples include automobile, naval, and sporting equipment manufacturing. This program received ABET accreditation in 2002.

This four-year plan is tentative and should be used as a guide.

<table>
<thead>
<tr>
<th>FALL QUARTER</th>
<th>WINTER QUARTER</th>
<th>SPRING QUARTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 20A</td>
<td>Math 20B</td>
<td>Math 20C</td>
</tr>
<tr>
<td>MAE 2-Intro to Aerospace</td>
<td>Phys 2A</td>
<td>Phys 2B</td>
</tr>
<tr>
<td>Chem 6A</td>
<td>HSS</td>
<td>New materials course & lab (pending)</td>
</tr>
<tr>
<td>HSS (College Requirements)</td>
<td>HSS</td>
<td>HSS</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 20D</td>
<td>Math 20F</td>
<td>Math 20E</td>
</tr>
<tr>
<td>Phys 2C and 2CL</td>
<td>MAE 8- Intro to MATLAB</td>
<td>MAE 131A- Solid Mechanics</td>
</tr>
<tr>
<td>MAE 3- Graphics and Design</td>
<td>MAE 130A - Statics</td>
<td>MAE 130B- Dynamics</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 105 - Mathematical Physics</td>
<td>MAE 101A - Intro to Fluids</td>
<td>MAE 101B - Advance Fluids</td>
</tr>
<tr>
<td>MAE 110A-Thermodynamics</td>
<td>MAE 143A - Signals and Systems</td>
<td>MAE 143B- Linear Control</td>
</tr>
<tr>
<td>MAE 140- Linear Circuits</td>
<td>MAE 130C- Vibrations</td>
<td>MAE 170- Experimental Technique</td>
</tr>
<tr>
<td>MAE 107- Computational Methods</td>
<td>SE 160A- Aerospace Structural Mechanics I</td>
<td>SE 160B- Aerospace Structural Mechanics II</td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 101C - Heat Transfer</td>
<td>MAE 155A - Aerospace Design</td>
<td>MAE 155B- Aeronautics Design</td>
</tr>
<tr>
<td>MAE 150 - Computer-Aid Design</td>
<td>MAE 175A - Engineering Lab</td>
<td>HSS</td>
</tr>
<tr>
<td>MAE 104 - Aerodynamics</td>
<td>MAE 142 - Dynamics and Controls</td>
<td>HSS</td>
</tr>
<tr>
<td>HSS</td>
<td>MAE 113 - Propulsion</td>
<td>TE</td>
</tr>
</tbody>
</table>

(continued on next page...)
AEROSPACE ENGINEERING:

Chem 6AH may be taken in place of Chem 6A

In fulfilling the Humanities and Social Science (HSS) requirements, students must take at least 24 units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher or lower.

Technical Elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics and must be selected with prior approval of the Department. See the MAE Student Affairs Office for a list of pre-approved Technical Electives.

Photos courtesy of the MAE 2 course of 2008

First-year aerospace engineering students work in teams to design, build, and fly multi-disciplinary payload experiments on balloon satellites to near-space. Students gain real-world engineering experience developing and assembling sub-systems on space flight critical systems.
ENVIROMENTAL ENGINEERING

The Environmental Engineering program resembles the Chemical Engineering program for the first two years. In the third and fourth year, the programs diverge: an environmental engineering sequence is offered, as well as further specialization in fluid mechanics, and a wide choice of Technical Elective (TE) courses, both from within MAE and in other departments. The newly founded Environmental Engineering program within the Department of Mechanical and Aerospace Engineering (MAE) at UCSD is a modern interpretation of this rapidly changing field. Unlike the classical environmental engineering topics (e.g. water sanitation, brownfield remediation) many new environmental engineering and sustainability challenges require strong quantitative skills. Renewable energy technologies require skills in material science and physics, climate change research requires individuals trained in fluid mechanics and environmental transport and sustainable building design requires deep knowledge of heat and mass transfer in complex geometries.

This four-year plan is tentative and should be used as a guide.

<table>
<thead>
<tr>
<th>FALL QUARTER</th>
<th>WINTER QUARTER</th>
<th>SPRING QUARTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 20A</td>
<td>Math 20B</td>
<td>Math 20C</td>
</tr>
<tr>
<td>Chem 6A</td>
<td>Phys 2A</td>
<td>Phys 2B</td>
</tr>
<tr>
<td>HSS (College Requirements)</td>
<td>Chem 6B</td>
<td>Chem 6C and 7L</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 20D</td>
<td>Math 20F</td>
<td>Math 20E</td>
</tr>
<tr>
<td>ESYS 101 - Environmental Biology</td>
<td>MAE 130A - Mechanics I: Statics</td>
<td>MAE 108 - Statistics and Probability for Engineering</td>
</tr>
<tr>
<td>Phys 2C and 2CL</td>
<td>MAE 8 Intro to MATLAB</td>
<td>MAE 124 - Environmental Engineering Challenges</td>
</tr>
<tr>
<td>MAE 3 Graphics and Design</td>
<td>HSS</td>
<td>Chem 140A</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 105 - Mathematical Physics</td>
<td>MAE 101A - Intro to Fluids</td>
<td>MAE 101B - Advance Fluids</td>
</tr>
<tr>
<td>MAE 110A- Thermodynamics</td>
<td>MAE 119- Renewable Energy</td>
<td>MAE 170 - Experimental Technique</td>
</tr>
<tr>
<td>CHEM 107</td>
<td>HSS</td>
<td>TE</td>
</tr>
<tr>
<td>CENG 100- Modeling and Computations</td>
<td>HSS</td>
<td>MAE 107- Computational Methods</td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 101C - Heat Transfer</td>
<td>MAE 126A - Environmental Engineering Lab</td>
<td>MAE 126B- Environmental Engineering Design</td>
</tr>
<tr>
<td>MAE 122- Environmental Transport</td>
<td>MAE 123- Groundwater Remediation</td>
<td>TE</td>
</tr>
<tr>
<td>TE</td>
<td>TE</td>
<td>TE</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>
ENVIRONMENTAL ENGINEERING

Chem 6AH, 6BH and 6CH may be taken in place of Chem 6A, 6B and 6C

In fulfilling the Humanities and Social Science (HSS) requirements, students must take at least 24 units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Eleven HSS courses are listed here; individual college requirements may be higher or lower.

Five Technical Elective (TE) courses are required to receive a degree in Environmental Engineering; at least 1 must be an upper-division course offered by the MAE department. See the MAE Student Affairs Office for a list of pre-approved Technical Electives.

This experiment consists of a plume produced by a source of salt water at the top of a tank of fresh water. The flow to the plume is controlled by a peristaltic pump, which pumps salt water from the beaker to the plume nozzle. The density of the plume is determined by a conductivity probe that measures the resistance of the solution that is, in turn, a function of the salt concentration. The probe measures the salinity of water drawn in through the tip by the second peristaltic pump. The location of the probe is controlled in the Labview VI.
MECHANICAL ENGINEERING

The Mechanical Engineering program has a traditional ABET-accredited four-year curriculum involving mechanics, vibrations, thermodynamics, fluid flow, heat transfer, materials, control theory and mechanical design. Graduates of this program find employment in the high-technology elector-mechanical industry as well as in the mechanical and aerospace industry.

This four-year plan is tentative and should be used as a guide.

<table>
<thead>
<tr>
<th>FALL QUARTER</th>
<th>WINTER QUARTER</th>
<th>SPRING QUARTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 20A</td>
<td>Math 20B</td>
<td>Math 20C</td>
</tr>
<tr>
<td>Chem. 6A</td>
<td>Phys 2A</td>
<td>Phys 2B</td>
</tr>
<tr>
<td>HSS (College Requirements)</td>
<td>Chem 6B</td>
<td>MAE 3- Graphics and Design</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math 20D</td>
<td>Math 20F</td>
<td>Math 20E</td>
</tr>
<tr>
<td>Phys. 2C and 2CL</td>
<td>MAE 130A - Statics</td>
<td>MAE 131A- Solid Mechanics</td>
</tr>
<tr>
<td>MAE 20- Materials Science</td>
<td>MAE 8- Intro to MATLAB</td>
<td>MAE 130B- Dynamics</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>MAE 108 – Statistics and Probability for Engineering</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 105 - Mathematical Physics</td>
<td>MAE 101A - Intro to Fluids</td>
<td>MAE 101B - Advance Fluids</td>
</tr>
<tr>
<td>MAE 110A- Thermodynamics</td>
<td>MAE 143A - Signals and Systems</td>
<td>MAE 143B- Linear Control</td>
</tr>
<tr>
<td>MAE 140- Linear Circuits</td>
<td>MAE 130C- Vibrations</td>
<td>MAE 170- Experimental Technique</td>
</tr>
<tr>
<td>MAE 107- Computational Methods</td>
<td>MAE 160 or MAE 131B Behavior of Materials/Solids</td>
<td>HSS</td>
</tr>
<tr>
<td>Year 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAE 101C - Heat Transfer</td>
<td>MAE 156A - Design Lab I</td>
<td>MAE 156B- Design Lab II</td>
</tr>
<tr>
<td>MAE 150 - Computer-Aid Design</td>
<td>MAE 171A - Engineering Lab I</td>
<td>TE</td>
</tr>
<tr>
<td>TE</td>
<td>TE</td>
<td>TE</td>
</tr>
<tr>
<td>HSS</td>
<td>HSS</td>
<td>HSS</td>
</tr>
</tbody>
</table>
MECHANICAL ENGINEERING:

Chem 6AH and 6BH may be taken in place of Chem 6A and 6B.

In fulfilling the Humanities and Social Science (HSS) requirements, students must take at least 24 units in the arts, humanities, and social sciences, not including subjects such as accounting, industrial management, finance, or personnel administration. Ten HSS courses are listed here; individual college requirements may be higher or lower.

Technical Elective (TE) courses must be upper-division or graduate courses in the engineering sciences, natural sciences or mathematics and must be selected with prior approval of the Department. See the MAE Student Affairs Office for a list of pre-approved Technical Electives.

Example of an MAE 3 Project

This course introduces the fundamentals of engineering graphics and the design. Emphasis is placed on applying engineering tools to design and fabrication of working machines. Course material will be centered around two projects:

- Model Clock Project (2.5 weeks): Students will use AutoCAD to design an escapement wheel and pendulum for a model clock, and make the model using shop tools.
- Robot Design Project (7.5 weeks): Teams of students will design and build a machine for a competition using DC motors, solenoids, and fabrication tools.
FREQUENTLY ASKED QUESTIONS

“What are the Criteria and Requirements to Apply to a Capped Major?”
Continuing students who wish to change into any MAE major must submit an online application through the JSOE Capped Major Application system during an application period. Applications will be accepted once a year. Admission is based on available space, and meeting these requirements does not guarantee admission. On average, those admitted to the major will exceed the minimum GPA required to apply.

All students who wish to apply MUST meet the minimum requirements as listed below:
(A) Complete at least one year/three quarters in residence at UCSD.
(B) Complete ALL of the following lower division requirements.

Freshmen Applicants:
- Math 20A, 20B and 20C
- Physics 2A, and 2B
- Chemistry 6A

For capped status, the Freshmen class level is determined by number of registered quarters—not number of units completed.

For Sophomore/Transfer Applicants
- Physics 2A, 2B, 2C, 2CL
- Chemistry 6A
- MAE 8

(C) Must have a minimum GPA of 2.5.
(D) Students will be ranked based on GPA of required math and science courses, and will be admitted according to rank.

“Which of the six UC San Diego colleges do engineering students choose?”

Each undergraduate college at UC San Diego is comprised of all types of majors so there is no “particular” college for engineering students. The main difference is that each college has its own general education requirements to graduate, mission, philosophy, traditions, and housing/dining facilities.

“What courses should I take at my community college to prepare for transferring to MAE?”

It is strongly recommended that transfers complete the following preparation for all engineering majors.
- Calculus I—for Science and Engineering (Math. 20A)
- Calculus II—for Science and Engineering (Math. 20B)
- Calculus and Analytic Geometry (Math. 20C)
- Differential Equations (Math. 20D)
- Linear Algebra (Math. 20F)
- Complete calculus-based physics series with lab experience (Physics 2A, B, and C)
- Chemistry 6A
- Highest level of introductory computer programming language course offerings at the community college

“Can I double major?”

UC San Diego does allow students to double major. However, you cannot double major or major and minor in two engineering majors. For example, you can double major in Economics and Mechanical Engineering but you cannot double major in Electrical Engineering and Mechanical Engineering.

“What companies recruit UC San Diego students?”

Various engineering companies actively recruit students from the Jacobs School of Engineering and a majority of these companies belong to our Corporate Affiliates Program (CAP). Below are just some of the companies affiliated with UCSD through CAP.
Course Descriptions

2015-2016

Please refer to The Schedule of Classes for the most up-to-date course information and prerequisite

Lower-Division

MAE 02. Introduction to Aerospace Engineering (4)
An introduction to topics in aeronautical and astronautical engineering including aerodynamics, propulsion, flight mechanics, structures, materials, orbital mechanics, design, mission planning, and environments. General topics include historical background, career opportunities, engineering ethics, and professionalism. Must be taken for a letter grade. Prerequisites: none.

MAE 03. Introduction to Engineering Graphics and Design (4)
Introduction to design process through a hands-on design project performed in teams. Topics include problem identification, concept generation, project management, risk reduction. Engineering graphics and communication skills are introduced in the areas of: Computer-Aided Design (CAD), hand sketching, and technical communication. Prerequisites: grade of C- or better in Physics 2A or 4A. Priority enrollment given to engineering majors.

MAE 05. Quantitative Computer Skills (4)
Introductory course for nonengineering majors. Use of computers in solving problems; applications from life sciences, physical sciences, and engineering. Students run existing computer programs and complete some programming in BASIC. Prerequisites: none.

MAE 07. Spatial Visualization (1)
(Cross-listed with SE 7). Spatial visualization is the ability to manipulate 2-D and 3-D shapes in one's mind. In this course, students will perform exercises that increase their spatial visualization skills. P/NP grades only. Students may not receive credit for SE 7 and MAE 7. Prerequisites: none.

MAE 08. MATLAB Programming for Engineering Analysis (4)
Computer programming in MATLAB with elementary numerical analysis of engineering problems. Arithmetic and logical operations, arrays, graphical presentation of computations, symbolic mathematics, solutions of equations, and introduction to data structures. Prerequisites: Math 20A or 20B or consent of instructor.

MAE 20. Elements of Materials Science (4)
The structure of materials: metals, ceramics, glasses, semiconductors, superconductors, and polymers to produce desired, useful properties. Atomic structures. Defects in materials, phase diagrams, microstructural control. Mechanical and electrical properties are discussed. Time temperature transformation diagrams. Diffusion. Prerequisites: Phys 2A or 4A, Chem 6A or Chem 6Ab, and Math 20C.

MAE 87. Freshman Seminar (1)
The Freshman Seminar program is designed to provide new students with the opportunity to explore an intellectual topic with a faculty member in a small seminar setting. Freshman Seminars are offered in all campus departments and undergraduate colleges. Topics vary from quarter to quarter. Enrollment is limited to fifteen to twenty students, with preference given to entering freshmen. Prerequisites: none.

MAE 92A. Design Competition—Design, Build, and Fly Aircraft (1)
(Cross-listed with SE 10A). Student teams design, build, and fly unmanned aircraft for a national student competition. Students concentrate on vehicle design including aerodynamics, structures, propulsion, and performance. Teams engineer, fabricate the aircraft, submit a design report, and prep aircraft for competition. Prerequisites: consent of instructor.

MAE 93. Design Competition—Design, Build, and Test Race Car (1)
Student teams design, build, and test a formula-style racing car for an international student competition. Students concentrate on vehicle system analysis and design, manufacturability, and performance. Teams engineer, fabricate car, submit a design report, and prep car for competition. Prerequisites: department approval.

MAE 98. Directed Group Study (2)
Directed group study on a topic in a field not included in the regular departmental curriculum. P/NP grades only. May be taken for credit two times. Credit may not be received for a course numbered 97, 98, or 99 subsequent to receiving credit for a course numbered 197, 198, or 199. Prerequisites: department approval.

MAE 99H. Independent Study (1)
Independent study or research under direction of a member of the faculty. Prerequisites: student must be of first-year standing and a Regent's Scholar; approved Special Studies form.

Upper-Division

MAE 101A. Introductory Fluid Mechanics (4)
Fluid statics; fluid kinematics; integral and differential forms of the conservation laws for mass, momentum, and energy; Bernoulli equation; potential flows; dimensional analysis and similarity. Prerequisites: admission to an engineering major and grades of C- or better in Phys 2A, Math 20D or 21D and Math 20E, or consent of instructor.

MAE 101B. Advanced Fluid Mechanics (4)
Laminar and turbulent flow. Pipe flow including friction factor. Boundary layers, separation, drag, and lift. Compressible flow including shock waves. Prerequisites: grades of C- or better in MAE 101A or CENG 101A or CENG 103A, and MAE 110A or CENG 102, or consent of instructor.

MAE 101C. Heat Transfer (4)
Extension of fluid mechanics in MAE 101A-B to viscous, heat-conducting flows. Application of the energy conservation equation to heat transfer in ducts and external boundary layers. Heat conduction and radiation transfer. Heat transfer coefficients in forced and free convection. Design applications. Prerequisites: MAE 101A or CENG 101A or CENG 103A, MAE 101B, and MAE 105, or consent of instructor.

MAE 104. Aerodynamics (4)
Basic relations describing flow field around wings and bodies at subsonic and supersonic speed. Thin-wing theory. Slender-body theory. Formulation of theories for evaluating forces and moments on airplane geometries. Application to the design of high-speed airplanes. Prerequisites: open to MC 25, MC 27, MC 28 and SE 27 only and grades of C- or better in MAE 101A and 101B, or consent of instructor.

MAE 105. Introduction to Mathematical Physics (4)
Fourier series, Laplace transform, elementary partial differential equations, integral transforms with applications to problems in vibration, wave motion, and heat conduction. Prerequisites: admission to engineering major and grades of C- or better in Phys 2A and B, and Math 20D or 21D.

MAE 107. Computational Methods in Engineering (4)
Introduction to scientific computing and algorithms; iterative methods, systems of linear equations with applications; nonlinear algebraic equations; function interpolation and numerical differentiation and optimal procedures; data fitting and least-squares; numerical solution of ordinary differential equations. Prerequisites: engineering majors only and grades of C- or better in MAE 8 or 9, and Math 20F.

MAE 108. Probability and Statistical Methods for Mechanical and Environmental Engineering (4)
Probability theory, conditional probability, Bayes theorem, random variables, densities, expected values, characteristic functions, central limit theorem. Engineering reliability, elements of estimation, random sampling, sampling distributions, hypothesis testing, confidence intervals. Curve fitting and data analysis. Prerequisites: Math 20F.

MAE 110A. Thermodynamics (4)
Fundamentals of engineering thermodynamics: energy, work, heat, properties of pure substances, first and second laws for closed systems and control volumes, gas mixtures. Application to engineering systems, power and refrigeration cycles, combustion. Prerequisites: grades of C- or better in Phys 2C and Chem 6A. Enrollment restricted to engineering majors only.

MAE 110B. Thermodynamic Systems (4)
Thermodynamic analysis of power cycles with application to combustion driven engines: internal combustion, diesel, and gas turbines. Thermodynamics of mixtures and chemical and phase equilibria. Computational methods for calculating chemical equilibrium. Prerequisites: grades of C- or better in MAE 110A. Course not offered every year.

MAE 113. Fundamentals of Propulsion (4)
Compressible flow, thermodynamics, and combustion relevant to aircraft and space vehicle propulsion. Analysis and design of components for gas turbines, including turbines, inlets, combustion chambers and nozzles. Fundamentals of rocket propulsion. Prerequisites: engineering majors MC 25, MC 27 and MC 28 only and grades of C- or better in MAE 110A or CENG 102, and MAE 101A or CENG 101A, and MAE 101B or CENG 101C.

MAE 117A. Elementary Plasma Physics (4)
(Cross-listed with Physics 151.) Particle motions, plasmas as fluids, waves, diffusion, equilibrium and stability, nonlinear effects, controlled fusion. Recommended preparation: Physics 108B or CEE 107.
Prerequisites: Math 20D or 21D, or consent of instructor.

MAE 118. Introduction to Energy Systems (4)
Overview of present day primary energy sources and availability; fossil fuel, renewable, and nuclear; heat engines; energy conservation, transportation, air pollution, and climate change. Students may not receive credit for both MAE 118 and MAE 118A. Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 119. Introduction to Renewable Energy: Solar and Wind (4)
Basic principles of solar radiation—diffuse and direct radiation; elementary solar energy engineering—solar thermal and solar photosynthetic; basic principles of wind dynamics—hydrodynamic laws, wind intermittency, Betz’s law; elementary wind energy engineering; solar and wind energy perspectives; operating the California power grid with 33 percent renewable energy sources. Students may not receive credit both MAE 110B and MAE 119. Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 120. Introduction to Nuclear Energy (4)
Overview of basic fission and fusion processes. Elementary fission reactor physics and engineering; environmental and waste disposal issues. Survey of fusion technology issues and perspectives. May not receive credit for both MAE 110C and MAE 120. Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 121. Air Pollution Transport and Dispersion Modeling (4)

MAE 122. Flow and Transport in the Environment (4)
Introduction to the air and aquatic environments. Buoyancy, stratification, and rotation. Earth surface energy balance. Introduction to the atmospheric boundary layer. Advection and diffusion. Turbulent diffusion and dispersion in rivers and in the atmospheric boundary layer. Surface waves and internal gravity waves. Prerequisites: MAE 101A or CENG 101A, or consent of instructor.

MAE 123. Introduction to Transport in Porous Media (4)

MAE 124. Environmental Challenges: Science and Solutions (4)
(Cross-listed with EYS 103.) This course explores the impacts of human social, economic, and industrial activity on the environment. It highlights sustainable development played by market forces, technological innovation and governmental regulation on local, national, and global scales. Prerequisites: grades of C- or better in Math 20B or Math 104C, or consent of instructor.

MAE 126A. Environmental Engineering Laboratory (4)
Analysis of experiments in Environmental Engineering: Drag in a water tunnel, shading effects on solar photovoltaic, buoyant plume dispersion in a water tank, atmospheric turbulence, and others. Use of sensors and data acquisition. Laboratory report writing; error analysis; engineering ethics. Prerequisites: MAE 101A or CENG 101A, MAE 170 and MAE 122.

MAE 126B. Environmental Engineering Design (4)
Fundamental principles of environmental design. Building a working prototype or computer model for an environmental engineering application. Work in teams to propose and design experiments and components, obtain data, complete engineering analysis, and write a report. Engineering ethics and professionalism. Prerequisites: MAE 126A.

MAE 130A. Mechanics I: Statics (4)
(Cross-listed with SE 101A.) Statics of particles and rigid bodies in two and three dimensions. Free body diagrams; Internal forces, statics of bodies in plane and space; equilibrium matrices; and determination of forces and moments using superposition and virtual work. Prerequisites: grades of C– or better in Math 20C and Phys 2A. Students cannot also receive credit for SE 101A.

MAE 130B. Mechanics II: Dynamics (4)
(Cross-listed with SE 101B.) Kinematics and kinetics of particles in 2-D and 3-D motion. Newton’s equations of motion; Energy and momentum methods. Impulsive motion and impact. Systems of particles. Kinematics and kinetics of rigid bodies in 2-D. Introduction to 3-D dynamics of rigid bodies. Prerequisites: grade of C– or better in MAE 130A or SE 101A.

MAE 130C. Mechanics III: Vibrations (4)
(Cross-listed with SE 101C.) Free and forced vibrations of undamped and damped single degree of freedom systems. Harmonic response to periodic excitation. Vibrational control and design in environments with multiple degrees of freedom. Modal analysis and application to realistic engineering problems. Vibration of continuous systems. Prerequisites: grades of C– or better in Math 20D and MAE 130A or SE 101B.

MAE 131A. Solid Mechanics I (4)
(Cross-listed with SE 110A.) Students may not receive credit for SE 110A or MAE 131A and MAE 110A or MAE 110B. Concepts of stress and strain. Hooke’s Law. Axial loading of bars. Torsion of circular shafts. Shear and normal stress. Bolted joints. Stress concentrations. Fracture mechanics. Fatigue. Prerequisites: grades of C– or better in MAE 131A or SE 110A, and MAE 109 (or concurrent), and admission to engineering major. Prerequisites: grades of C– or better in Math 20D and MAE 130A or SE 101A.

MAE 131B. Fundamentals of Solid Mechanics II (4)
Continuous mechanics of solids and its application to the mechanical response of machine and structural elements. Stress and strain in infinite and finite regions of materials. Equilibrium equations and constitutive relations. Linear elastic stress analysis in torsion, plane stress and plane strain; stress concentrations; fracture mechanics. Extremum principles and structural stability. Viscoelasticity, plasticity, and failure criteria. Theorems of plastic limit analysis. Prerequisites: grades of C– or better in MAE 131A or SE 110A, and MAE 109 (or concurrent), and admission to engineering major. Prerequisites: grades of C– or better in Math 20D, and MAE 130A or SE 101B.

MAE 132. Intermediate Dynamics (4)
Kinematics and kinetics of 3-D rigid body motion. Angular momentum and its rate of change. Euler’s and general equations of motion. Rotation of a particle fixed axis and a fixed point. Gyroscopic motion. D’Alembert’s principle. Lagrange’s equations of motion with applications. Prerequisites: grade of C– or better in MAE 130B or SE 101B.

MAE 133. Finite Element Methods in Mechanical and Aerospace Engineering (4)
Development of stiffness and mass matrices based upon variational principles and application to static, dynamic, and stability design problems in structural and solid mechanics. Architecture of computer codes for linear and nonlinear finite element analysis and basic computer implementation. The use of general purpose finite element structural analysis computer codes. Prerequisites: grade of C– or better in MAE 131A or SE 110A.

MAE 140. Linear Circuits (4)

MAE 142. Dynamics and Control of Aerospace Vehicles (4)
The dynamics of vehicles in space or air are derived for analysis of the stability properties of spacecraft and aircraft. The theory of flight, lift, drag, thrust, and powered modes of aircraft are discussed. Optimal state space control theory: design of analog and digital controllers (autopilots), Kalman filters, trajectory generation. The use of linearization techniques for systems with inherent nonlinearities. Prerequisites: admission to the engineering major and grades of C– or better in MAE 140 or ECE 171A, or consent of instructor.

MAE 143A. Signals and Systems (4)

MAE 143B. Linear Control Analysis (4)

MAE 144. Embedded Control and Robotics (4)
Each student builds, models, programs, and controls an unstable robotic system built around a small Linux computer. Review/synthesis of ECE: A) Modern physical systems. B) Modern control systems. C) Systems, Linear Circuits. PWDs, H-bridges, quadrature encoders. D) Embedded Linux. C, graphical programming. Multi-threaded applications. Bus communication to supporting ICs. Prerequisites: admission to the engineering major and grades of C– or better in MAE 140 or SE 101B, and admission to the engineering major. Open to major code MC 27 only.

MAE 145. Introduction to Robotics: Planning and Estimation (4)
This course is an intro to robotic planning algorithms and programming. Topics: sensor-based planning (Maze algorithms), motion planning via heuristic search (shortest path algorithms on graphs, A*). The engineering and scientific aspects of crack nucleation, slow crack growth, and unstable fracture in crystalline and amorphous solids. Microstructural effects on crack initiation, fatigue crack growth and fatigue toughness. Methods of fatigue testing and fracture toughness testing. Fractography and micrography. Damage detection methods and failure prevention. Failure analysis of real engineering structures. Prerequisites: consent of instructor. Not offered every year.

MAE 146. Mechanical Behavior of Materials (4)
Elasticity and inelasticity, dislocations and plasticity of crystals, creep, and strengthening mechanisms. Mechanical behavior of ceramics, composites, and polymers. Fracture: mechanical and micromechanical. Fatigue. Laboratory demonstrations of selected topics. Prerequisites: grades of C– or better in MAE 20, MAE 100A (or SE 101A) and MAE 113A, or consent of instructor.

MAE 165. Fatigue and Failure Analysis of Engineering Components (4)

MAE 170. Mechanical Engineering Laboratory I (4)
Design and analysis of experiments in fluid mechanics, solid mechanics, and control engineering. Experiments in wind tunnel, water tunnel, vibration table and material testing machines, and refined electromechanical systems. Laboratory report writing; error analysis; engineering ethics. Prerequisites: MAE 101C or CENG 101B; MAE 143B or ECE 120; MAE 160 or MAE 131B or SE 110B; MAE 130C or SE 101C; MAE 140; and MAE 170.

MAE 171B. Mechanical Engineering Laboratory II (4)
Design and analysis of original experiments in mechanical engineering. Students research projects using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine and control systems. Students propose and design experiments, obtain data, complete engineering analysis and write a major report. Prerequisites: requires a grade of C– or better in MAE 171A.

MAE 175A. Aerospace Engineering Laboratory I (4)
Analysis of aerospace engineering systems using experimental facilities in undergraduate laboratories: wind tunnel, water channel, vibration table, and testing machine. Students operate facilities, obtain data, complete engineering analysis and write a major report. Prerequisites: MAE 101C or CENG 101B; MAE 143B or ECE 120; MAE 160 or MAE 131B or SE 110B; MAE 130C or SE 101C; MAE 140; and MAE 170.

MAE 180A. Spacecraft Guidance Control (4)

MAE 181. Space Mission Analysis and Design (4)
Space mission concepts, architectures, and analysis. Mission geometry, Astrodynamics, orbit and constellation design. Space environment. Payload and spacecraft design and sizing. Power sources
and distribution. Thermal management. Structural design. Guidance and navigation. Space propulsion. Orbital debris and survivability. Cost modeling and risk analysis. **Prerequisites:** upper-division standing or consent of instructor.

MAE 192. Senior Seminar in Aerospace, Environmental or Mechanical Engineering (1)

The Senior Seminar Program is designed to allow senior undergraduates to meet with faculty members in a small group setting to explore an intellectual topic in aerospace, environmental or mechanical engineering (at the upper-division level). Topics will vary from quarter to quarter. Senior Seminars may be taken for credit up to four times, with a change in topic and permission from the department. Enrollment is limited to twenty students, with preference given to seniors. **Prerequisites:** department stamp or consent of instructor.

MAE 197. Engineering Internship (1–4)

Students work in local industry or hospitals under faculty supervision. Units may not be applied toward graduation requirements. Salaried or unsalaried. Number of units determined by enrollment frequency. First quarter up to four units. Subsequent quarters cannot exceed one unit. **Prerequisites:** consent of instructor and department stamp, 2.50 overall GPA minimum, at least ninety units.

MAE 198. Directed Group Study (1–4)

Directed group study on a topic or in a field not included in the regular department curriculum, by special arrangement with a faculty member. May be taken P/NP only. **Prerequisites:** consent of instructor.

MAE 199. Independent Study for Undergraduates (4)

Independent reading or research on a problem by special arrangement with a faculty member. P/NP grades only. **Prerequisites:** consent of instructor.
STUDENT AFFAIRS CONTACT LIST

Department of Mechanical and Aerospace Engineering

Mailing Address:
UCSD Department of Mechanical and Aerospace Engineering
9500 Gilman Drive
La Jolla, CA 92093-0411

MAE STUDENT AFFAIRS OFFICE
EBU II, FIRST FLOOR

http://mae.ucsd.edu

DEPARTMENT CHAIR

Dr. Vitali Nesterenko 858-534-0113 mae-chair-l@ucsd.edu

STUDENT AFFAIRS MANAGER

Patrick Mallon 858-534-4065 pmallon@ucsd.edu

UNDERGRADUATE STUDENT ADVISORS

Sandra de Sousa (Last names A-L) 858-822-2035 sdesousa@ucsd.edu

Chelsea Rankin (Last names M-Z) 858-534-0114 crankin@ucsd.edu